翻訳と辞書 |
Exponential integral : ウィキペディア英語版 | Exponential integral
In mathematics, the exponential integral Ei is a special function on the complex plane. It is defined as one particular definite integral of the ratio between an exponential function and its argument. ==Definitions== For real nonzero values of ''x'', the exponential integral Ei(''x'') is defined as : In general, a branch cut is taken on the negative real axis and E1 can be defined by analytic continuation elsewhere on the complex plane. For positive values of the real part of , this can be written〔Abramowitz and Stegun, p. 228, 5.1.4 with ''n'' = 1〕 : The behaviour of E1 near the branch cut can be seen by the following relation:〔Abramowitz and Stegun, p. 228, 5.1.7〕 :
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Exponential integral」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|